

Assignment 2 Pre-Training Assignment Multiple Choice Questions

Use the following "EEDI Technical File" and "IMO MEPC Resolution 245(66) on 2014 Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships" and calculate Attained EEDI by completing Section 6 of EEDI Technical File (last page)

SAMPLE OF EEDI TECHNICAL FILE

1 Data

1.1 General information

Shipbuilder	JAPAN Shipbuilding Company		
Hull No.	12345		
IMO No.	94111XX		
Kind of ship	Bulk carrier		

1.2 Principal particulars

Length overall	250.0 m
Length between perpendiculars	240.0 m
Breadth, moulded	40.0 m
Depth, moulded	20.0 m
Summer load line draught, moulded	14.0 m
Deadweight at summer load line draught	150,000 tons

1.3 Main engine

Manufacturer	JAPAN Heavy Industries Ltd.		
Туре	6J70A		
Maximum continuous rating (MCR)	15,000 kW x 80 rpm		
SFC at 75% MCR	165.0 g/kWh		
Number of set	1		
Fuel type	Diesel Oil		

1.4 Auxiliary engine

Manufacturer	JAPAN Diesel Ltd.		
Туре	5J-200		
Maximum continuous rating (MCR)	600 kW x 900 rpm		
SFC at 50% MCR	220.0 g/kWh		
Number of set	3		
Fuel type	Diesel Oil		

1.5 Ship speed

Ship speed in deep water at summer load line draught at 75% of MCR	14.25 knots
load life draught at 75% of WCK	

2 Power Curves

The power curves estimated at the design stage and modified after the speed trials are shown in figure 2.1.

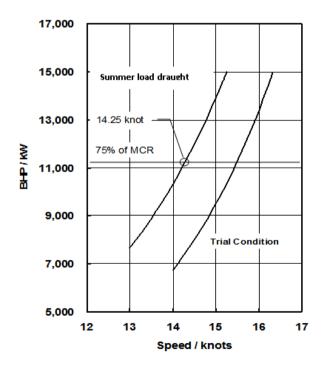
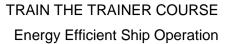



Figure 2.1: Power curves

3 Overview of Propulsion System and Electric Power Supply System

- 3.1 Propulsion system
- 3.1.1 Main engine: Refer to subparagraph 1.3.

3.1.2 Propeller

Туре	Fixed pitch propeller		
Diameter	7.0 m		
Number of blades	4		
Number of set	1		

- 3.2 Electric power supply system
- 3.2.1 Auxiliary engines

Refer to subparagraph 1.4.

3.2.2 Main generators

Manufacturer	JAPAN Electric		
Rated output	560 kW (700 kVA) x 900 rpm		
Voltage	AC 450 V		
Number of set	3		

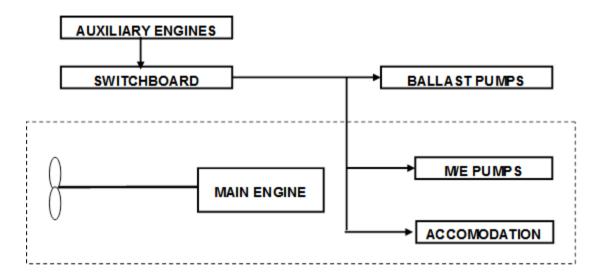


Figure 3.1: Schematic figure of propulsion and electric power supply system

4 Estimation Process of Power Curves at Design Stage

Power curves are estimated based on model test results. The flow of the estimation process is shown below.

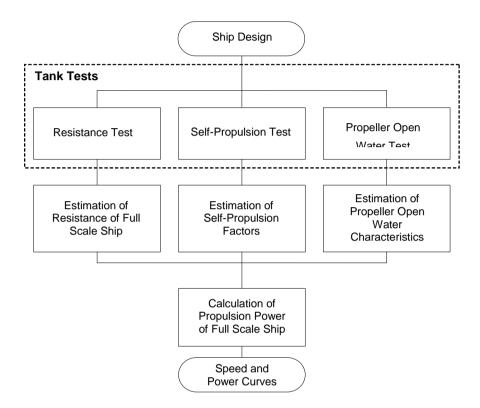


Figure 4.1: Flow-chart of process for estimating power curves

5 Description of Energy Saving Equipment

5.1 Energy saving equipment of which effects are expressed as $P_{AEeff(i)}$ and/or $P_{eff(i)}$ in the EEDI calculation formula

N/A

5.2 Other energy saving equipment

N/A

TRAIN THE TRAINER COURSE Energy Efficient Ship Operation

6 Calculated Value of attained EEDI

6.1 Basic data

Type of Ship	Capacity DWT	Speed V _{ref} (knots)

6.2 Main engine

MCR _{ME} (kW)	Shaft Gen.	P _{ME} (kW)	Type of Fuel	C _{FME}	SFC _{ME} (g/kWh)

6.3 Auxiliary engines

P _{AE} (kW)	Type of Fuel	C _{FAE}	SFC _{AE} (g/kWh)

- 6.4 Ice class
- 6.5 Innovative electrical energy efficient technology
- 6.6 Innovative mechanical energy efficient technology
- 6.7 Cubic capacity correction factor
- 6.8 Calculated value of attained EEDI

Attained EEDI: g-CO2/ton mile